Catalogue - page 4

Affiche du document Quelles sources d'énergie d'ici à 2050 ?

Quelles sources d'énergie d'ici à 2050 ?

Sylvain DAVID

1h03min25

  • Économie
  • Génie et activités connexes
La production d'énergie mondiale atteint 10 milliards de tonnes équivalent pétrole (tep) chaque année. Elle est assurée essentiellement par du pétrole, du gaz et du charbon, de façon très inégalitaire au niveau de la planète. Si les pays riches gaspillent, de nombreux pays en voie de développement et très peuplés tendent légitimement à augmenter massivement leur consommation dans les décennies à venir. Les scénarios énergétiques prévoient une augmentation de 50 à 300% de la production mondiale d'énergie d'ici 2050. Il est d'ores et déjà évident qu'une telle augmentation ne pourra se faire sur le modèle actuel, basé sur les énergies fossiles, dont les réserves sont limitées, et dont l'utilisation conduit à des émissions massives de CO2 responsable d'un changement climatique de grande ampleur. Le développement de nouvelles sources d'énergie est aujourd'hui incontournable, quelques soient les efforts que nous pourrons faire dans la maîtrise de la demande. Ces sources alternatives sont bien connues et relativement bien quantifiées. Le nucléaire apparaît comme la seule source disponible rapidement à grande échelle, mais nécessite une mobilisation importante de capitaux et une acceptation publique. L'énergie solaire est un gisement important, mais sa mise en oeuvre reste extrêmement chère et complexe. Elle est cependant déjà compétitive dans des zones dépourvues de réseaux électriques. L'énergie éolienne représente un gisement limité et ne pourra sans doute dépasser 10% de la production électrique, et toujours de façon intermittente et aléatoire. La biomasse est une voie intéressante, mais difficile de développer à grande échelle. Les autres sources (géothermie, vagues, marées, …) semblent incapables de répondre à une demande forte. Le stockage de l'énergie (hydrogène notamment) est loin d'être maîtrisé. Il représente un défi technologique important, et pourrait rendre les énergies intermittentes plus intéressantes dans l'avenir. Enfin, la fusion thermonucléaire représente une source massive, mais risque de ne pas être disponible avant la fin du siècle. Si le développement de l'électro-nucléaire au niveau mondial est sans doute la façon la plus rapide pour lutter contre l'effet de serre, cela ne sera en aucun cas suffisant. Le défi énergétique et climatique auquel nous sommes confrontés, nécessite la mise en place de la capture du CO2 émis par les centrales utilisant des combustibles fossiles et un développement soutenu des énergies renouvelables. Les alternatives aux énergies fossiles présentent leurs propres inconvénients, mais il n'est pas certain que nous ayons encore le choix.
Accès libre
Affiche du document La physique des pâtes

La physique des pâtes

Philippe COUSSOT

1h19min57

  • Génie et activités connexes
On a l'habitude de classer la matière en solides, liquides ou gaz. Il existe cependant une classe de matériaux, les pâtes, dont le comportement mécanique et plus généralement les caractéristiques physiques sont en quelque sorte intermédiaires entre celles des liquides et des solides. Cette classe comprend des matériaux très divers : purées, compotes, sauces, yaourt, mousses, crèmes, gels, peintures, vernis, boues, ciment, colles, etc ; mais qui ont au moins un point commun : dans tous les cas il s'agit de fluides coincés, qui ne deviennent liquides que lorsqu'on leur fournit une énergie suffisante, et restent (ou redeviennent) solides si l'énergie fournie est trop faible. Cette propriété est ce qui fait l'intérêt principal de ces matériaux lors de leur utilisation (la mousse à raser reste sur le visage, bien avant de sécher la peinture appliquée sur un mur vertical ne coule plus, la boue argileuse conserve la forme qu'on lui a donnée en vue d'en faire une poterie, etc). En y regardant de plus près on se rend compte que cette transition solide-liquide se produit de manière relativement abrupte : une pâte n'est pas capable de couler à une vitesse modérée en régime permanent : soit elle coule vite, soit elle s'arrête. Ce phénomène conduit à une coexistence des phases liquide et solide dans la plupart des situations d'écoulement, et parfois à des évolutions catastrophiques. En outre des instabilités hydrodynamiques particulières (à vitesse nulle !) se développent avec ce type de matériaux : digitation lors de l'écartement de deux surfaces solides séparées par une fine couche de fluide ; goutte-à-goutte du ketchup ou de la mayonnaise sortant du tube ; compression simple (comme une éponge) ou craquelures lors du séchage ; vieillissement réversible au repos. Ces matériaux fascinants et complexes constituent un champ de recherche encore très ouvert. Une thermodynamique spécifique adaptée à ces fluides coincés peut elle être développée ? Quelles sont les origines microscopiques des comportements observés ? La réponse à ces questions fournira un cadre solide pour la formulation de matériaux industriels innovants (plus légers, plus robustes, contenant moins de produits nocifs, etc).
Accès libre
Affiche du document Le monde quantique au travail : l'optoélectronique

Le monde quantique au travail : l'optoélectronique

Emmanuel ROSENCHER

1h10min25

  • Physique
  • Génie et activités connexes
L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge…) - les diodes électroluminescentes (affichage, éclairage, zapettes, …) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet, …) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle.
Accès libre
Affiche du document Hibernia : une plate-forme pétrolière

Hibernia : une plate-forme pétrolière

Michel VACHE

1h23min40

  • Génie et activités connexes
Au début des années 1980, MOBIL a découvert un gisement pétrolifère gigantesque dans 80 m d'eau sur les Grand Banks, sur la côte est du Canada, à 350 km au large de l'île de Terre-Neuve. La difficulté majeure pour le développement de ce champ de pétrole résidait dans le fait qu'il y règne des conditions d'environnement extrêmes, non seulement la houle qui est comparable aux conditions de la Mer du Nord (30 m de hauteur de vagues) mais surtout les icebergs qui dérivent du nord-ouest du Groenland par le couloir du Labrador, et qui créent une menace pour toute forme d'exploitation pétrolière à partir de plates-formes fixes ou flottantes.
Fort de l'expérience acquise avec les plates-formes gravitaires en béton installées en Mer du Nord au milieu des années 1970, DORIS a imaginé un nouveau concept de plate-forme en béton résistant aux icebergs de plus de 10 millions de tonnes de déplacement. L'ouvrage est stable sur le fond marin grâce à son propre poids; il peut stocker 1,3 millions de barils de pétrole brut; il intègre 64 puits de forage, et est capable d'emporter 40 000 t d'équipements dans un pont intégré installé au sommet de quatre colonnes s'appuyant sur le caisson de stockage immergé qui le maintiennent hors d'atteinte des vagues les plus hautes. L'objet de la conférence est de décrire le concept de l'ouvrage et les défis techniques qu'il a fallu relever, et de présenter les différentes phases de réalisation qui ont jalonné un projet unique qui a pris près de 15 ans à se concrétiser.
Accès libre
Affiche du document La conception des barrages

La conception des barrages

Bernard TARDIEU

1h00min48

  • Génie et activités connexes
Les barrages participent au développement de plusieurs façons. Dans les territoires où la ressource hydrique est irrégulière, ils permettent de régulariser les débits d'eau pour les besoins de l'irrigation (c'est l'objet de plus des deux tiers des barrages), de l'eau domestique et industrielle. Ils participent à l'écrêtement des pics de crue et permettent dans certains cas d'améliorer la navigabilité des fleuves. Dans les territoires riches en ressources hydriques, ils sont un des éléments de la production d'énergie hydroélectrique, une énergie renouvelable et très flexible dans son adaptabilité aux variations de la demande électrique.
Comme le barrage d'Assouan une génération plus tôt, le barrage des Trois Gorges, en Chine, a beaucoup fait parler de lui. Le projet sera présenté ainsi que les différents points de vue. Plus encore que d'autres grands ouvrages d'infrastructure, les barrages, par les changements qu'ils apportent, favorisent des populations et en défavorisent d'autres. Des progrès notables ont été effectués pour mieux prendre en compte les populations défavorisées, surtout les plus fragiles, et intégrer leur développement dans le projet global. Cet aspect essentiel sera également développé. D'un point de vue plus technologique, on présentera les différents types de barrages et notamment les nouvelles technologies qui permettent de construire de façon plus économique et plus efficace. Les barrages en construction se trouvent en majorité dans les pays émergents.
Accès libre
Affiche du document Les égouts et l'évacuation des déchets

Les égouts et l'évacuation des déchets

Jean-Marie MOUCHEL

1h26min51

  • Sciences de la vie, Biologie
  • Généralités
  • Génie et activités connexes
Après de nombreux siècles où l'alimentation en eau de Paris, et par voie de conséquence, son réseau d'égout sont restés fort limités, un essor considérable a été donné au réseau au milieu du 19e siècle, et il s'est poursuivi jusqu'à aujourd'hui. Parmi les projets initiaux, certains prévoyaient la création d'une ville souterraine, où seraient réalisées nombreuses des basses besognes nécessaires au fonctionnement et au prestige de la partie visible (et "hygiénisée") de la ville. Les réseaux souterrains devaient ainsi assurer le transport de l'eau mais aussi de nombreuses marchandises ou déchets. Dans le même temps, l'alimentation en eau potable généralisée, et l'élimination des eaux souillées hors de la ville, devenait un objectif prioritaire pour des raisons sanitaires. Les épidémies de choléra du milieu du siècle furent un des facteurs déclenchant le développement des projets de Belgrand à l'époque ou Haussmann rénovait la partie visible de Paris. Une particularité des égouts de Paris est la taille des canalisations, qui les rend en tout point visitables, ce qui leur confère un cachet tout particulier. Ils ont d'ailleurs toujours été visités, par les égoutiers chargés de leur entretien en premier lieu, mais aussi par de nombreux visiteurs qui accèdent aujourd'hui au musée des égouts situé dans le réseau. Dans la dernière partie du 19e siècle fut instauré le principe du tout-à-l'égout, mais sa mise en oeuvre complète, visant à l'élimination de toutes les fosses chez les particuliers, dura plusieurs décennies et se poursuivit au début du 20ième siècle. Le réseau devint unitaire, évacuant à la fois les eaux usées et les eaux de chaussées (eaux du lavage de rues, eaux de ruissellement pluvial etc.). Pour des raisons techniques, et pour éviter des déversements en Seine à l'intérieur de Paris, Belgrand a basé l'architecture du réseau sur un collecteur central qui rejoignait directement la Seine à Clichy.
Le développement de la ville, et la mise en oeuvre du tout-à-l'égout ont considérablement augmenté la quantité de pollution déversée. A la fin du 19ième siècle, une solution basée sur l'épuration par le sol fut développée pour traiter les eaux avant leur arrivée en Seine. Des champs d'épandage furent installés dans la presqu'île de Gennevilliers puis plus à l'aval (Achères, Triel…), la ville de Paris devint propriétaire fermier et favorisait une intense activité de maraîchage. Au moment de l'exposition universelle à la toute fin du siècle, presque toutes les eaux collectées étaient envoyées vers les champs d'épandage. Cependant, la course en avant devait continuer, de plus en plus d'eau étant utilisée et devant être évacuée puis traitée dans une ville en constante expansion, alors que la pression foncière réduisait la superficie des champs d'épandage. Dès le début du 20ième, les rejets d'eaux usées en Seine reprirent de plus belle. Après de nombreux essais menés sur les pilotes par la ville de Paris, la première station d'épuration moderne à boues activées fut construite à Achères en 1938 (aujourd'hui "Seine-Aval"), et ne fut réellement alimentée que plusieurs années après la guerre. Dans les filières de traitement d'une telle station, comme dans le sol, des micro-organismes se développent en digérant les matières organiques et les transforment en gaz carbonique et en sels. Les matières solides transportées dans l'eau des égouts et les micro-organismes produits au cours du traitement sont rassemblés pour constituer les boues d'épuration. D'autres filières sont chargées du traitement des boues qui sont épaissies, pressées, éventuellement digérées avant d'être épandues sur des terres agricoles, mises en décharge ou encore incinérées. Depuis la fin de la deuxième guerre mondiale, le processus de construction de nouveaux réseaux et de nouvelles stations de traitement des eaux n'a cessé de se développer. A partir des années 70, on cessa de créer des réseaux unitaires pour passer au système séparatif. Dans un réseau séparatif, les eaux pluviales sont collectées dans un réseau séparé des eaux usées domestiques ou industrielles. Les eaux pluviales sont évacuées directement vers le milieu récepteur, alors que les eaux usées sont envoyées vers les stations d'épuration. Un avantage très significatif de ce type de collecte est que les flots reçus par les stations de traitement sont beaucoup plus réguliers, et qu'il n'y a pas de risques de surcharge du système en temps de pluie. Par contre, ce système nécessite une surveillance accrue des "mauvais branchements" d'eaux usées sur le réseau pluvial, et ne permet pas de traiter les eaux de ruissellement qui peuvent être fortement contaminées. Les stations de traitement sont devenues plus efficaces et plus flexibles dans leur gestion, ce qui permet notamment de traiter une fraction toujours croissante des eaux de temps de pluie dans les réseaux anciens unitaires, et de résoudre en grande partie graves problèmes dues aux déversements de temps de pluie dans le réseau unitaire. De nouvelles stations ont été construites en différents points de l'agglomération parisienne pour des raisons techniques, parce qu'il devenait techniquement difficile d'acheminer les eaux sur de très longues distances vers un point de traitement unique à l'aval, mais aussi pour des raisons éthiques et politiques pour que soit mieux partagées les nuisances dues au traitement. Le devenir des boues est toujours un problème aujourd'hui car elles peuvent contenir des contaminants persistants en quantité excessive. Alors que les matières organiques contenues dans les boues constituent des amendements utiles aux cultures, les contaminations doivent être évitées. Des efforts très importants ont été faits dans l'agglomération parisienne pour limiter le rejets de contaminants dans le réseau. Cette politique de réduction à la source a porté ses fruits puisque les teneurs en certains métaux dans les boues de la station "Seine-Aval" ont diminué de plus qu'un facteur 10 en 20 ans. L'évolution actuelle va vers des réseaux et des méthodes de traitement plus diversifiées. Le développement de stations de traitement va se poursuivre en différents points de l'agglomération parisienne, alors que l'interconnexion du réseau unitaire devient une réalité, qui permet une meilleure gestion des eaux en temps de pluie. Dans le même temps les eaux pluviales sont de plus en plus souvent retenues ou traitées à l'amont des bassins versants pour limiter le ruissellement excessif. Il aura donc fallu plus d'un siècle pour que la grande ligne directrice "tout vers l'aval" qui avait été instaurée par Belgrand soit remise en cause. Il aura fallu un siècle également pour que l'objectif "zéro rejets par temps", atteint au début du siècle lors de l'exposition universelle, soit de nouveau atteint. Le réseau d'assainissement fait donc bien partie de ces patrimoines techniques urbains fondamentaux qu'il faut gérer aujourd'hui en pensant aux générations futures.
Références utilisées dans cette conférence : "Atlas du Paris Souterrain", par Gilles Thomas et Alain Clément, Ed. Parigramme, 2001. "Paris Sewers and Sewermen, realities and representations", par D. Reid, Harvard University Press, 1991. "Les égouts de Paris, une ville sous la ville", plaquette de présentation des égouts, Mairie de Paris "Rendre l'eau à la vie, 1970/1995, 25ième anniversaire du SIAAP", par M.F. Pointeau, Ed. CEP Euro Editions. "La Seine en son Bassin", M. Maybeck, G. de Marsily et E. Fustec (editeurs), publié par Elsevier en 1998.
Accès libre
Affiche du document Colloïdes et biotechnologies

Colloïdes et biotechnologies

Jérôme BIBETTE

55min53

  • Chimie, Cristallographie, Mineralogie
  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
L'exposé introduit lutilisation des colloïdes dans le domaine du diagnostic biologique. Nous introduirons les bases de la physico chimie des colloïdes ainsi que les approches classiques du diagnostic biologique: test d'agglutination à partir de particules de Latex ou dor, test ELISA avec des particules magnétiques. Ensuite nous présenterons une nouvelle approche de diagnostic basée sur la formation de nano structures colloïdales magnétiques. Le principe repose sur l'aptitude de certains colloïdes magnétiques, à la fois suffisamment petits et susceptibles, à former rapidement des lignes réversibles sous champ. Nous montrerons que cette solution colloïdale change de couleur sous l'action d'un champ magnétique, conséquence de la diffraction des chaînes auto assemblées, et comment ce phénomène peut conduire à la détermination du profil de force entre colloïdes. Si les particules sont greffées par un anticorps, alors en présence de l'antigène spécifique capable de ponter deux anticorps, les lignes peuvent devenir permanentes et quasi irréversibles. Nous discuterons comment la persistance des lignes peut révéler de manière très sensible la quantité d'antigène introduite, et pourquoi la force magnétique imposée à chaque colloïde peut accélérer la complexation antigène anticorps. Nous finirons par une introduction à l'utilisation des colloïdes en micro fluidique. Nous montrerons comment les auto assemblages magnétiques peuvent devenir des matrices de séparation très efficaces pour des entités biologiques comme des ADN génomiques ou des cellules.
Accès libre
Affiche du document Voir le cerveau penser

Voir le cerveau penser

Denis LE BIHAN

1h16min21

  • Sciences de la vie, Biologie
  • Sciences médicales. Médecine
  • Génie et activités connexes
L'imagerie par Résonance Magnétique (IRM) permet depuis une vingtaine d'année de produire des images de l'anatomie ‘statique' du cerveau, c'est-à-dire des coupes virtuelles montrant les détails des structures cérébrales (matière grise, matière blanche) avec une précision millimétrique. Cette imagerie ‘anatomique' est utilisée par les radiologues pour la détection et la localisation de lésions cérébrales. Plus récemment, l'IRM est aussi devenue ‘fonctionnelle' (IRMf), montrant l'activité des différentes structures qui composent notre cerveau. L'imagerie neurofonctionnelle par IRMf repose sur deux concepts fondamentaux. Le premier, soupçonné depuis l'Antiquité mais clairement mis en évidence au siècle dernier par les travaux du chirurgien français Paul Broca, est que le cerveau n'est pas un organe homogène, mais que chaque région est plus ou moins spécialisée dans sa fonction. Le deuxième, suggéré par l'anglais Sherrington à la fin du siècle dernier, est que les régions cérébrales actives à un moment donné voient leur débit sanguin augmenter. C'est cette augmentation locale et transitoire de débit sanguin, et non directement l'activité des neurones, qui peut être détectée par l'IRMf et par la caméra à émission de positons (autre méthode d'imagerie neurofonctionnelle). En pratique, il suffit donc d'acquérir des images représentant le débit sanguin en chaque point de notre cerveau quand il exécute une tâche particulière (motrice, sensorielle, cognitive,...) et dans une condition de référence neutre. A l'aide d'un traitement informatique de ces images, on peut extraire les régions cérébrales pour lesquelles le débit sanguin a changé entre la condition de contrôle et l'exécution de la tâche et en déduire que ces régions ont participé à cette tâche. Ces régions sont reportées en couleurs sur l'anatomie cérébrale sous-jacente. Bien que l'imagerie neurofonctionnelle, aujourd'hui, ne permette pas de descendre à l'échelle des neurones, les exemples rassemblés dans ces pages tendent à montrer que les circuits cérébraux utilisés par l'activité de ‘pensée' sont communs avec ceux utilisés par des processus de perception ou d'action réels. Ce résultat n'est pas surprenant a priori, si on considère que certaines formes de pensée (créer et voir une image mentale, imaginer une musique, inventer une histoire, évoquer des souvenirs...) ne sont autres que des simulations ou reproductions internes d'évènements que nous avons vécus ou que nous pourrions vivre. Au delà de l'identification des régions impliquées dans les processus cognitifs, des travaux en cours laissent présager qu'un jour nous pourrions peut-être même avoir accès en partie à la nature de l'information traitée par les différentes régions de notre cerveau, et donc, d'une certaine manière, à une petite fraction du contenu de nos pensées...
Accès libre
Affiche du document Nanotechnologies et perspectives industrielles

Nanotechnologies et perspectives industrielles

Hervé ARRIBART

1h17min21

  • Génie et activités connexes
Pour mettre en oeuvre les nanotechnologies, il faut imaginer des procédés permettant d'organiser, de structurer la matière à l'échelle nanométrique - c'est-à-dire à des échelles comprises entre 1 et 100 nanomètres. C'est à cet aspect Matériaux des nanotechnologies que la conférence de ce soir sera consacrée. Pourquoi des nano-matériaux ? ; comment les élaborer ? Pourquoi les propriétés de la matière changent elles quand elle est hétérogène à des échelles inférieures à 100 nm ? Les effets sont souvent spectaculaires : les métaux peuvent devenir transparents et prendre des couleurs vives, les vitrocéramiques (qui sont des nano-composites verre-cristal) possèdent des propriétés mécaniques et thermiques bien supérieures à celles du verre homogène de même composition. Les explications physiques de ces phénomènes sont connues ; elles font en général appel à des dimensions caractéristiques bien identifiées. Comment procéder pour obtenir ces matériaux nano-structurés? Si de nombreuses voies sont explorées aujourd'hui dans les laboratoires de recherche, peu parmi elles seront compatibles avec les contraintes économiques pesant sur les coûts de production. On sera probablement conduit à privilégier les voies d'élaboration basées sur l'auto-organisation de la matière, prenant exemple sur les matériaux naturels qui sont bien souvent eux-mêmes nano-structurés. Quelques exemples de nanomatériaux bio-inspirés seront présentés.
Accès libre
Affiche du document Nanobiologie : la micromanipulation des molécules

Nanobiologie : la micromanipulation des molécules

Franck JULICHER

1h06min12

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Si l'on regarde une cellule vivante sous le microscope optique, il y a à l'évidence de nombreux phénomènes dynamiques actifs comme : la division et les mouvements cellulaires, le transport d'objets dans la cellule ou encore la formation et disparition de structures intracellulaires comme les organelles. Des macromolécules complexes, qui jouent le rôle de petites machines à l'échelle moléculaire, sont à l'origine de ces phénomènes actifs. Ces molécules agissent en grand nombre dans une cellule vivante, invisible dans le microscope optique du fait de leur petite taille de l'ordre de quelques nanomètres. Les prototypes de ces molécules sont les moteurs moléculaires qui consomment un carburant chimique qu'ils transforment en travail mécanique. Dans les dix dernières années, des techniques de micromanipulation ont permis d'étudier les propriétés mécaniques de ces molécules à l'échelle d'une molécule unique. Des techniques de fluorescence et de pince optique permettent de mesurer des forces de l'ordre de piconewtons et des déplacements de quelques nanomètres. Il existe toute une diversité de moteurs moléculaires : des moteurs linéaires qui se déplacent le long de filaments rigides ; des moteurs rotatifs, qui tournent dans une membrane cellulaire ; des systèmes de moteurs qui génèrent des mouvements oscillatoires, permettant la nage de certains organismes unicellulaires. Enfin, il y a des molécules qui se déplacent le long de la double hélice de l'ADN, le porteur du code génétique. Ces molécules ouvrent l'hélice, dupliquent le code ou créent une copie sur un brin d'ARN. L'étude des propriétés physiques de molécules individuelles par des techniques de micromanipulation est importante pour mieux comprendre leur fonctionnement dans des structures biologiques complexes. Finalement, la fusion de structures artificielles nanotechnologiques avec des molécules individuelles biologiques permet de créer artificiellement des systèmes moléculaires actifs qui représentent un premier pas vers une technologie de moteurs moléculaires.
Accès libre
Affiche du document Les nanotubes et leurs applications

Les nanotubes et leurs applications

Annick LOISEAU

1h21min31

  • Génie et activités connexes
Jusqu'en 1985, les seules formes cristallisées connues de carbone pur étaient le graphite et le diamant. En 1985 trois chercheurs R. Smalley, R. Curl (Rice University, Houston, USA) et H. Kroto (University of Sussex, Grande Bretagne) ont découvert une nouvelle forme de carbone, la molécule de C60 constituée de 60 atomes de carbone répartis sur les sommets d'un polyèdre régulier constitué de facettes hexagonales et pentagonales (Figure 1). Cette molécule a été appelée fullerène et tire son nom de l'architecte américain R. Buckminster Fuller qui construisit la géode du pavillon de l'exposition universelle de Montréal qui a la même forme géométrique. Il a fallu cependant attendre 1990 pour que soit mis au point par D. Huffman et W. Krätschmer (Université de Heidelberg, Allemagne) un procédé de synthèse qui a permis d'obtenir des quantités macroscopiques de ces molécules et notamment des cristaux. De ce moment date réellement le démarrage des études physiques et chimiques sur les fullerènes. La découverte des nanotubes de carbone est quant à elle due à S. Iijima (NEC, Tsukuba, Japon) qui l'identifie par microscopie électronique dans un sous produit de synthèse des fullerènes. Un nanotube de carbone est un objet tubulaire de dimension nanométrique en diamètre et de longueur micrométrique. Il est constitué d'un feuillet de graphite enroulé sur lui même de façon à former un cylindre fermé aux deux extrémités par deux demi-fullerènes (Figure 1). Depuis, différentes méthodes de synthèse spécifiques ont été mises au point et ont permis l'étude en laboratoire de la structure et des propriétés physiques et chimiques de ces objets. Ces recherches ont pris un essor extraordinaire tant sont spectaculaires à la fois la structure de cet objet et ses propriétés dans différents domaines allant de la mécanique à la nanochimie en passant par la nanoélectronique et les effets de pointe sous champ électrique. Des applications sont même d'ores et déjà à l'ordre du jour. La conférence aura pour objet de présenter l'état actuel des recherches sur les nanotubes et les enjeux pour les développements futurs. Elle se structurera de la façon suivante. Après avoir présenté le nanotube dans la famille des structures du carbone, je décrirai sa structure et son identification structurale et chimique à l'aide de la microscopie électronique en transmission dont je rappellerai le principe de façon simple. Je ferais le point ensuite sur les différentes méthodes de synthèse des nanotubes et sur les modèles qui sont actuellement avancés pour expliquer les mécanismes de formation de ces objets de façon à discuter du problème d'un dispositif de synthèse contrôlée à grande échelle, qui est un des enjeux pour les développements futurs d'applications et l'utilisation du nanotube comme nanomatériau. La dernière partie de l'exposé sera consacré aux propriétés extraordinaires de ces objets de façon à montrer l'intérêt unique que ces objets présentent aussi bien pour les sciences fondamentales que pour les applications. Concernant le développement d'applications potentielles, je m'efforcerai de mettre en relief les défis à relever pour passer de l'objet de laboratoire au nanomatériau et à son utilisation à une échelle macroscopique.
Accès libre
Affiche du document Nano-électronique et informatique

Nano-électronique et informatique

Claude WEISBUCH

1h10min34

  • Physique
  • Génie et activités connexes
Les révolutions de l' information et des communications sont un des faits marquants du siècle et vont continuer à bouleverser dans ce nouveau siècle tous les domaines de l'activité humaine, y compris nos modes de vie. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons (les " grains " d'électricité) ou de photons (les " grains " de lumière) (quelques dizaines de milliers de chaque pour l'élément d'information, le " bit "), et la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres, que ce soit mécaniques, thermiques, optiques ou électriques. C'est justement les propriétés moyennes des semi-conducteurs qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût (la puce de plusieurs centaines de millions de transistors coûte le même prix qu'un transistor dans les années 60), fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. En savoir plus : http://pmc.polytechnique.fr/ weisbuch/microelectronique
Accès libre
Affiche du document Qu'entend-on par nanotechnologies ?

Qu'entend-on par nanotechnologies ?

Henry VAN DAMME

1h22min25

  • Génie et activités connexes
Que sont les Nanotechnologies ? Imaginez que l'on puisse fabriquer les matériaux, les objets et les dispositifs dont nous avons besoin avec autant de précision que la Nature lorsqu'elle construit une cellule, un organe ou un organisme : en choisissant chaque molécule qui entrera dans la construction de l'édifice, en choisissant la manière de les assembler, en choisissant la manière de construire et d'emboîter des niveaux de plus en plus complexes d'organisation. La nature même de ce que nous fabriquons en serait changée. Non pas que nous donnerions vie à nos créations, mais leurs caractéristiques et les fonctions que l'on pourrait en attendre seraient infiniment plus riches que celles que nous connaissons. Construire un matériau aussi solide et résistant au choc que la nacre, un actionneur qui serait un véritable muscle artificiel, un filtre aussi efficace et peu énergivore que le rein, un tissus dont les caractéristiques changeraient en fonction de la température et de l'humidité, des capsules moléculaires capables de délivrer un médicament sur une cible précise, un anticorps artificiel capable de détecter des cellules malignes et de les éliminer, un calculateur dont le coeur serait constitué de quelques molécules ou même d'une seule d'entre elles,... Nous sommes encore loin de la plupart de ces réalisations, mais la décennie qui vient de s'écouler a vu de tels progrès dans les deux éléments indispensables -la maîtrise du très petit et la maîtrise du complexe- que l'on peut raisonnablement espérer y arriver. On sait désormais, grâce aux microscopes à effet tunnel et à force atomique, non seulement « voir » les atomes, mais aussi les manipuler un par un, explorer tous les recoins d'une molécule ou encore la déformer pour étudier sa réaction, ou encore y accrocher un prolongement artificiel. On sait marier la chimie du carbone -celle des molécules et du monde vivant- avec la chimie du monde minéral. On connaît aussi de mieux en mieux la sociologie des molécules, les lois qui régissent la manière dont elles vont s'assembler entre elles pour former des entités plus grosses : des membranes, des capsules,... On a compris comment les propriétés d'un petit morceau de matière changent lorsque sa taille devient très petite et on en a tiré profit pour fabriquer de nouvelles briques pour la construction des matériaux. Les nanotechnologies constituent les différentes facettes de cette démarche, qui change fondamentalement notre rapport à la matière.
Accès libre
Affiche du document Géographie et observation par satellite

Géographie et observation par satellite

Catherine MERING

1h15min48

  • Sciences de la vie, Biologie
  • Génie et activités connexes
  • Méthodes de la géographie. Explorations et voyages
La géographie s'intéresse aux structures spatiales et aux processus d'origine anthropique et naturelle qui les produisent. La question se pose alors d'observer ces structures de la façon la plus objective et la plus directe possible. Depuis l'avènement de la photographie aérienne et de la télédétection, les géographes ont à leur disposition une source d'information irremplaçable pour observer, analyser et cartographier ces structures sous leur forme la plus directement perceptible et mesurable, c'est à dire les paysages.
Les photographies aériennes, qui ont été prises de façon systématique à partir des années 50 leur permettaient déjà d'observer le paysage en laboratoire, d'en délimiter les différentes unités pour produire des croquis interprétatifs et enfin des cartes. Au début des années 70, les images multispectrales, prises de façon systématique sur l'ensemble du globe par le satellite Landsat MSS inauguraient la série de prises de vue périodiques de la surface terrestre sous forme d'images numériques. Les méthodes statistiques et informatiques allégeaient désormais sa tâche en classant automatiquement les points de l'image, l'aidant ainsi à produire plus rapidement et de façon plus objective une carte des paysages de la scène étudiée. L'avancée incontestable que constituait la télédétection satellitaire et l'accès aux images numériques de la Terre, ne remettait pas en cause l'intérêt des photographies aériennes . En effet, le pouvoir de résolution de ces nouvelles images était encore insuffisant puisqu'il ne permettait pas de distinguer les tissus urbains, les lieux d'habitats dispersés, ni les paysages complexes et discontinus comme les steppes et les savanes de la zone intertropicale.
Les satellites SPOT et Landsat Thematic Mapper, lancés au milieu des années 80, allaient combler ce fossé: il était désormais possible d'étudier de nombreuses catégories de paysages, quel que soit leur niveau de complexité. Un problème demeurait cependant : les prises de vues effectuées par les capteurs comme ceux de SPOT et Landsat dits "passifs" parce qu'ils ne font qu'enregistrer l'énergie renvoyée par la surface, sont difficilement exploitables en période de forte nébulosité où les paysages sont totalement masqués par les nuages. Mais depuis les années 90, grâce aux images radar des satellites ERS et JERS , l'observation des paysages peut se faire indépendamment des conditions climatiques et météorologiques, ce qui ouvre la voie à l'étude par satellite des zones tropicales et équatoriales où l'atmosphère est rarement limpide ou ceux des zones boréales éclairées la plupart du temps par une lumière rasante.
Les géographes, disposent donc aujourd'hui d'une immense banque d'images sur les paysages terrestres. Ces archives, acquises depuis environ un demi-siècle continuent de s'enrichir d'images numériques produites par des capteurs passifs ou actifs, prises sous des angles variés et à des résolutions de plus en plus grandes. A l'aube du troisième millénaire, il ne s'agira plus seulement pour eux de faire un inventaire des paysages en les cartographiant, mais d'analyser et de mesurer leurs transformations : En effet, ces transformations qu'elles soient très rapides quand elles sont dues à des catastrophes naturelles, comme les séismes, les éruptions volcaniques, les cyclones ou les inondations ou plus lentes lorsqu'elles sont liées à l'évolution des sociétés telles la déforestation, la déprise agricole ou la croissance urbaine sont désormais directement observables par télédétection.
Accès libre
Affiche du document Les composites thermostructuraux

Les composites thermostructuraux

Pierre BETIN

1h15min19

  • Génie et activités connexes
Armer les matériaux en incorporant en leur sein matriciel un renfort fibreux, et accroître ainsi leur tenue mécanique, est une démarche classique depuis le torchis jusqu'au composite, en passant par le béton armé. Il est vrai que la nature nous en offre un exemple achevé avec le bois. La course à l'espace et l'essor du transport aérien ont, depuis trente ans, accéléré le développement des composites. Des fibres de très haute résistance et des polymères nouveaux ont été mis sur le marché. Le technologue en a tiré parti pour bâtir des textures et mettre au point des matrices conduisant à des composites performants, légers, compétitifs et durables. Parallèlement, l'ingénieur a appris à concevoir et à construire composite en adoptant des architectures dépouillées, en choisissant des formes simples et en réduisant le nombre de pièces. Dans la famille des composites, les composites thermostructuraux constituent une niche de haut de gamme qui illustre bien les enjeux stratégiques et les défis technologiques. La raison d'être de ces composites thermostructuraux, à base de fibres et de matrices en carbone ou en céramique, est de répondre aux besoins de la mécanique thermique : celle qui doit encore fonctionner à des températures supérieures à 1 000°. Plus réfractaires et plus légers que les métaux, moins fragiles que le carbone ou la céramique monolithique, ils ouvrent une nouvelle voie de progrès.
Accès libre
Affiche du document Les alliages métalliques pour conditions extrêmes

Les alliages métalliques pour conditions extrêmes

André PINEAU

1h32min36

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Les métaux et leurs alliages ont toujours joué un rôle primordial dans le développement de nos sociétés. Ils ont toujours contribué à la résolution de bon nombre de problèmes de société incontournables. Plutôt que de faire un inventaire, on s'efforcera de montrer les diverses étapes à franchir dans le développement d'un alliage métallique destiné à remplir une fonction donnée. On illustrera également les développements des grandes disciplines (Chimie, Physique, Mécanique, Simulation Numérique) qui ont largement contribué à la métallurgie. A cet effet, on rappellera tout d'abord les spécificités physiques des métaux et alliages métalliques. On montrera à ce propos comment il a été possible de profiter de certains traits spécifiques favorables et de surmonter quelques handicaps, comme la densité. Parmi les situations extrêmes envisagées, on se restreindra à celles qui font appel à la résistance mécanique des métaux et des alliages métalliques en traitant successivement le cas des très basses températures (transport de gaz liquéfiés), des très grandes vitesses de déformation (" crash " automobile), des températures élevées (turbines aéronautiques) et celui de l'irradiation aux neutrons (réacteurs électronucléaires). On conclura en envisageant un certain nombre d'applications pour lesquelles le développement de nouveaux alliages métalliques reste un verrou technologique et pose de réels défis scientifiques et techniques.
Accès libre
Affiche du document Les matériaux intelligents

Les matériaux intelligents

Joël DE ROSNAY

1h11min28

  • Génie et activités connexes
  • Génie chimique et techniques connexes, chimie industrielle
Nous avons été habitués aux matériaux traditionnels (bois cuir, laine...) et connu la révolution des matières plastiques et des composites. Voici celle des matériaux intelligents capables de changer de forme, de couleur ou de conductivité en fonction de leur environnement. Les alliages à mémoire de forme, les matériaux piézo-électriques, magnétoscrictifs ou électrorhéologiques connaissent déjà de nombreuses applications. Des exemples en sont donnés dans le domaine de l'aérospatiale, de l'automobile, de la médecine, de la robotique ou du bâtiment. Mais déjà, de nouveaux matériaux intelligents sortent des laboratoires, s'inspirant de plus en plus des propriétés des systèmes biologiques. Grâce aux nanotechnologies, à des outils comme le microscope à effet tunnel ou le microscope à force atomique, il devient possible de les produire par un usinage à l'échelle de l'infiniment petit. On crée notamment des structures supramoléculaires, des polymères conducteurs et semiconducteurs, des textiles intelligents, des membranes sélectives ou des peaux artificielles. Avec de nombreuses applications dans le domaine militaire, dans celui de l'informatique et des microprocesseurs, dans la bioélectronique ou les biocapteurs. Le futur des matériaux intelligents passe par une intégration de plus en plus étroite entre supports physiques et biomatériaux. Le bio-ordinateur à ADN, les nanolabos, les MEMS, ou les biopuces implantables fascinent et inquiètent tout à la fois les scientifiques et le public. Un diaporama présente les avancées les plus récentes dans ces domaines. Les matériaux intelligents du futur ouvrent la voie à des interfaces plus étroites entre l'homme et les machines, conduisant progressivement à l'émergence de " l'homme symbiotique ".
Accès libre
Affiche du document Les biomatériaux

Les biomatériaux

Laurent SEDEL

1h01min44

  • Sciences médicales. Médecine
  • Génie et activités connexes
Les biomatériaux représentent une des grandes avancées thérapeutiques de ces quarante dernières années. Définis comme des matériaux travaillant sous contrainte biologique, voués au remplacement d'une fonction ou d'un organe, ils sont présents dans de très nombreuses stratégies thérapeutiques. Selon la définition de Chester (1981), il s'agit de tout matériau non vivant utilisé dans un dispositif médical et visant à remplacer ou traiter un tissu, organe ou une fonction avec une durée de contact supérieure à trois semaines. On estime à environ 3,2 millions les personnes qui en France sont porteuses d'un biomatériau. Ces derniers posent des problèmes scientifiques qui représenteront la substance centrale de cet exposé, mais posent aussi des problèmes économiques, éthiques, réglementaires et industriels qui ne sauraient être passés sous silence sans avoir une approche par trop réductrice. Il y a souvent confusion entre biomatériau et bio matériel. Il est en fait habituel de confondre ces deux notions même si au sens strict il ne faudrait parler que de biomatériau, c'est à dire une partie constituante du bio matériel. Élément primordial de certaines stratégies thérapeutiques, les biomatériaux partagent avec le médicament les exigences de sécurité, fiabilité, reproductibilité. D'utilisation plus récente, ils n'ont cependant pas atteint les mêmes niveaux d'exigence et pourtant la responsabilité est immense puisque si un traitement médicamenteux peut être interrompu à tout moment, un biomatériau une fois implanté ne pourra être retiré que lors d'une nouvelle intervention chirurgicale.
Accès libre
Affiche du document Les batteries et piles dans un environnement durable

Les batteries et piles dans un environnement durable

Jean-François FAUVARQUE

1h05min25

  • Génie et activités connexes
Les générateurs électrochimiques transforment l'énergie chimique directement en énergie électrique. Ceux que nous utilisons habituellement sont caractérisés par leur autonomie, leur souplesse d'utilisation et leur discrétion. Une pile transforme de la matière puis est rejetée. Les produits qu'elle contient ne doivent donc pas être gênants pour l'environnement. Un accumulateur utilise mieux les matériaux qu'il contient, car il peut être rechargé électriquement. Le développement de nouveaux accumulateurs Ni-MH , Li-ion, …, prend une importance économique croissante, dans le domaine des télécommunications qui privilégie la miniaturisation, dans le domaine spatial, qui privilégie la fiabilité, dans le domaine du véhicule électrique ou hybride qui privilégie la cyclabilité et l'énergie cumulée. L'énergie embarquée à bord d'un générateur électrochimique apparaît modeste devant celle fournie par la combustion des hydrocarbures. C'est pourquoi se développent les piles à combustible. Comme les moteurs thermiques, elles utilisent l'air ambiant. Les piles à combustible ont un meilleur rendement énergétique et utilisent mieux les carburants fossiles. Elles sont bien adaptées à l'utilisation de l'hydrogène, combustible accessible au moyen des énergies renouvelables. Les baisses de prix attendues leur permettront de trouver une place dans une économie de développement durable.
Accès libre
Affiche du document L'homme dans l'espace, les vols habités

L'homme dans l'espace, les vols habités

Arlène AMMAR-ISRAEL

1h13min11

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
  • Génie et activités connexes
Depuis les débuts de l'ère spatiale, il y a environ un demi-siècle, les vols habités ont occupé une place privilégiée dans l'histoire scientifique et technologique moderne, compte tenu de leur caractère exceptionnel. L'espace est particulièrement hostile à l'homme : absence de pesanteur, radiations, confinement, températures extrêmes, vide.... Progressivement, les difficultés de la vie et du travail dans l'espace, ont été surmontées, grâce en particulier à l'analyse des mécanismes en jeu et aux progrès de la technologie, à une sélection et un entraînement des astronautes très rigoureux et à l'emploi de contre-mesures. Pour retracer l'histoire des vols habités, nous rappellerons comment la conquête spatiale qui a été l'un des grands sujets de compétition de la guerre froide, a conduit à l'envoi du premier homme dans l'espace suivi du programme Apollo, de la navette spatiale et des stations orbitales. Aujourd'hui la Station Spatiale Internationale, le plus grand programme civil en coopération au niveau mondial, est en construction et la Station sera opérationnelle en 2004. Des études sont en cours aux États-Unis, en Russie et en Europe pour préparer l'exploration de Mars par l'homme qui pourrait avoir lieu à partir de 2020. Enfin, nous essaierons de mieux faire comprendre les enjeux scientifiques et économiques de ces missions à partir d'exemples significatifs tels que la maintenance et la réparation du Télescope Spatial Hubble, la mission franco-russe Perseus sur la station orbitale MIR au cours de laquelle en 1999 J. P. Haigneré a séjourné six mois dans l'espace, le programme français de préparation à l'utilisation de la Station Spatiale Internationale.... Hub : Hub :
Accès libre
Affiche du document Les lanceurs spatiaux

Les lanceurs spatiaux

Hubert CURIEN

1h22min28

  • Astronomie, Astrophysique, Recherche spatiale, Géodésie
  • Génie et activités connexes
La conquête de l'Espace par l'homme est l'un des grands événements du XXe siècle. La technique des fusées n'est pas nouvelle : elle remonte aux feux d'artifices chinois ! Ce qui est nouveau, c'est l'usage d'engins fiables et puissants capables de placer en orbite des objets de plusieurs tonnes. La concurrence de prestige de la guerre froide entre les USA et l'URSS a conduit à l'édification de programmes de lancements dont les premières étapes ont été marquées par la mise en orbite de Spoutnik, puis d'un homme : Gagarine. L'Europe, particulièrement stimulée par la France, est vite entrée dans la course. L'étape décisive a été le succès d'Ariane en 1979. Les satellites d'usage courant aujourd'hui sont placés sur des orbites spécifiques, géostationnaires ou héliosynchrones, par exemple. Ces trajectoires sont définies en fonction du type de satellites (télécommunication, observation…). Les lanceurs dits " classiques " sont formés de plusieurs étages, dotés de moteurs à liquides ou à poudres. La famille Ariane a évolué depuis un quart de siècle pour en arriver au modèle Ariane V, qui est maintenant commercial. Faut-il s'attendre à des évolutions spectaculaires dans les techniques de base ? Les spécialistes n'en prévoient pas pour le moment. Plutôt que sur des novations profondes, la concurrence se base sur la fiabilité, et sur la réduction des prix. Certes, tous les progrès de la technologie des matériaux sont mis à profit pour alléger les structures et les rendre toujours plus sûres. Le dilemme entre fusées consommables (telles qu'Ariane) et engins réutilisables (tels que la " navette " américaine) a perdu de son acuité. La diversité est une nécessité.
Accès libre
Affiche du document Le traitement des images

Le traitement des images

Olivier FAUGERAS

1h17min55

  • Savoir et communication
  • Psychologie
  • Génie et activités connexes
Mon exposé est centré sur un aspect du traitement d'images, celui du traitement de l'information tridimensionnelle. Je prendrai comme point de départ les idées de David Marr dont l'influence a été déterminante à la fois sur les neurosciences de la vision et sur le traitement d'images ou la vision par ordinateur. L'idée selon laquelle la vision est notamment un problème de traitement de l'information qui peut être abordé en utilisant des contraintes assez générales issues de la physique et de la géométrie pour construire une représentation des surfaces des objets présents et de leurs mouvements s'est avérée extrêmement fructueuse tant du point de vue théorique pour répondre précisément à une partie de la question " qu'est-ce que voir ? " que du point de vue applicatif pour résoudre de nombreux problèmes où intervient la perception visuelle robotique au sens large, c'est-à-dire celle d'un système mécanique/informatique.
En me plaçant de trois points de vue, mathématique, algorithmique et biologique, je montrerai comment une combinaison d'indices visuels tels que les variations spatiales d'intensité et de texture, le mouvement, les contours d'occultation ou encore la stéréoscopie peut fournir de l'information sur la forme et le mouvement tridimensionnels des surfaces des objets. J'illustrerai mon propos par quelques exemples d'applications comme le calcul de l'orientation d'un robot dans l'espace, la génération de déplacements, la reconnaissance d'objets et la réalité augmentée.
Accès libre
Affiche du document Puces et biopuces

Puces et biopuces

Roland MORENO

1h07min46

  • Génie et activités connexes
La puce est un carré en silicium (seul matériau avec lequel on soit arrivé à faire des semiconducteurs), plus petit que l’ongle du petit doigt, avec de très nombreuses petites pattes qui font penser à une puce. On peut se faire une idée de la révolution qu’a introduit la puce, en consultant par exemple Internet, qui est de loin la manifestation la plus spectaculaire des possibilités. Il y a des microprocesseurs partout, c’est à dire l’intelligence ; il y a des mémoires. Je n’ai inventé que la carte à puces. Les biopuces sont une sorte de fantasme journalistique : il n’y en a pas qui fonctionne. Les grands de l’informatique comme Intel, Texas Instrument ne travaillent pas dessus. C’est trop différent des circuits intégrés.
Il y a une différence spectaculaire entre mémoire informatique et mémoire humaine.
Comment se fait-il qu’il est si difficile d’apprendre ? Qu’il soit impossible d’oublier sur commande ? Aujourd’hui j’ai une veste jaune, si demain vous voulez chasser cette image de votre mémoire, ça vous sera complètement impossible. Il n’y a pas d’intersection entre la volonté et la mémoire. La mémoire artificielle la plus simple : une feuille de papier, une vitre embuée sont des mémoires, au sens où l’on peut inscrire une information et elle reste. Toutes ces mémoires sont effaçables. Il suffit de frotter avec un chiffon et l’information s’évapore. Rien de tel n’est concevable avec notre mémoire. La mémoire humaine est infinie ; ce soir ayant déjà dans notre tête tout ce que nous avons, nous allons voir un film d’action, on sort avec le film dans la tête mais ça n’a pas chassé de précédent souvenir. Les mémoires artificielles sont finies, elles ont un espace délimité. Une cassette de magnétoscope, une fois remplie, ne peut prendre une seconde d’images supplémentaires. Sur cet étonnement, j’ai voulu créer une mémoire artificielle ayant les traits de fonctionnement de la mémoire humaine, son irréversibilité. Une information enregistrée est irréversiblement enregistrée. Les informaticiens adorent ce type de situation stable...
Accès libre
Affiche du document L'informatique de demain : de Von Neumann aux superprocesseurs

L'informatique de demain : de Von Neumann aux superprocesseurs

François ANCEAU

1h19min27

  • Savoir et communication
  • Génie et activités connexes
L'évolution du matériel informatique est certainement le phénomène technique qui a connu la progression la plus importante pendant ce demi-siècle. L'apparition de la microélectronique a permis, sur les trente dernières années, une augmentation de la performance des microprocesseurs par un facteur d'environ 100 000, tandis que le prix des machines informatiques était divisé par plusieurs dizaines. Sous la pression des utilisateurs, la course à la performance semble insatiable. Les concepteurs des nouvelles machines informatiques rivalisent d'ingéniosité pour arriver à exécuter les programmes de plus en plus rapidement. L'organisation interne des processeurs modernes s'apparente à des sortes de "chaînes de montage" dans lesquelles plusieurs instructions sont simultanément en exécution. Ces techniques tiennent souvent de l'acrobatie. En effet, la recherche effrénée de la vitesse de traitement incite, par exemple, à utiliser des résultats intermédiaires avant même qu'ils n'aient été élaborés, en spéculant sur la valeur qu'ils devront avoir. Cette course folle se poursuit sans qu'aucun signe de fléchissement ne se fasse sentir. On constate même actuellement une accélération de sa vitesse d'évolution. Les études prospectives laissent à penser que ce rythme va se poursuivre pendant au moins encore dix ou vingt ans.
Accès libre
Affiche du document Les matériaux moléculaires

Les matériaux moléculaires

Michel VERDAGUER

1h12min07

  • Chimie, Cristallographie, Mineralogie
  • Génie et activités connexes
L' histoire de l'humanité est scandée par la nature des matériaux que l'homme est capable d'élaborer et d'utiliser pour répondre à ses besoins. Notre époque est marquée par une explosion de la création de nouveaux matériaux, de plus en plus conçus pour répondre à un besoin très précis. Dans ce contexte, les matériaux réalisés à partir de molécules peuvent faire valoir de nombreux avantages : ils sont le plus souvent de faible densité, transparents ou colorés à la demande, solubles, biocompatibles, faciles à mettre en forme, etc. La flexibilité de la chimie moléculaire permet de produire pratiquement " à la carte " de nouvelles molécules et de nouveaux édifices moléculaires en variant de manière de plus en plus subtile structures, structures électroniques et propriétés. Les synthèses sont guidées par les besoins en nouveaux matériaux de structure ou en matériaux fonctionnels. Notre vie quotidienne est ainsi entourée de matériaux moléculaires familiers qu'ils soient d'origine naturelle ou industrielle, créations de l'homme. L'exposé les identifie, illustre et commente quelques unes de leurs propriétés et leurs multiples domaines d'application. Dans le même temps, une recherche pluridisciplinaire se poursuit pour obtenir des matériaux présentant des propriétés inédites, voire des propriétés multiples au niveau macroscopique (grands ensembles de molécules) ou au niveau d'une seule molécule (électronique moléculaire, machines moléculaires…). Quelques aspects de ces recherches sont présentés, en mettant en évidence les principes fondamentaux sur lesquels repose la synthèse des molécules et des édifices moléculaires présentant des propriétés données, les techniques récentes qui permettent un progrès plus rapide en matière de matériaux moléculaires, les contraintes qui s'exercent sur la production de ces matériaux et les perspectives qui s'ouvrent dans un domaine où la riche complexité des matériaux biologiques constitue une matière première et un exemple, une source de réflexion et d'espoir permanents.
Accès libre

...

x Cacher la playlist

Commandes > x
     

Aucune piste en cours de lecture

 

 

--|--
--|--
Activer/Désactiver le son